3.3.32 \(\int \frac {\sin (a+b \sqrt [3]{c+d x})}{(c e+d e x)^{4/3}} \, dx\) [232]

3.3.32.1 Optimal result
3.3.32.2 Mathematica [A] (verified)
3.3.32.3 Rubi [A] (verified)
3.3.32.4 Maple [F]
3.3.32.5 Fricas [F]
3.3.32.6 Sympy [F]
3.3.32.7 Maxima [C] (verification not implemented)
3.3.32.8 Giac [F]
3.3.32.9 Mupad [F(-1)]

3.3.32.1 Optimal result

Integrand size = 27, antiderivative size = 120 \[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=\frac {3 b \sqrt [3]{c+d x} \cos (a) \operatorname {CosIntegral}\left (b \sqrt [3]{c+d x}\right )}{d e \sqrt [3]{e (c+d x)}}-\frac {3 \sin \left (a+b \sqrt [3]{c+d x}\right )}{d e \sqrt [3]{e (c+d x)}}-\frac {3 b \sqrt [3]{c+d x} \sin (a) \text {Si}\left (b \sqrt [3]{c+d x}\right )}{d e \sqrt [3]{e (c+d x)}} \]

output
3*b*(d*x+c)^(1/3)*Ci(b*(d*x+c)^(1/3))*cos(a)/d/e/(e*(d*x+c))^(1/3)-3*b*(d* 
x+c)^(1/3)*Si(b*(d*x+c)^(1/3))*sin(a)/d/e/(e*(d*x+c))^(1/3)-3*sin(a+b*(d*x 
+c)^(1/3))/d/e/(e*(d*x+c))^(1/3)
 
3.3.32.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.71 \[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=-\frac {3 \left (-b \sqrt [3]{c+d x} \cos (a) \operatorname {CosIntegral}\left (b \sqrt [3]{c+d x}\right )+\sin \left (a+b \sqrt [3]{c+d x}\right )+b \sqrt [3]{c+d x} \sin (a) \text {Si}\left (b \sqrt [3]{c+d x}\right )\right )}{d e \sqrt [3]{e (c+d x)}} \]

input
Integrate[Sin[a + b*(c + d*x)^(1/3)]/(c*e + d*e*x)^(4/3),x]
 
output
(-3*(-(b*(c + d*x)^(1/3)*Cos[a]*CosIntegral[b*(c + d*x)^(1/3)]) + Sin[a + 
b*(c + d*x)^(1/3)] + b*(c + d*x)^(1/3)*Sin[a]*SinIntegral[b*(c + d*x)^(1/3 
)]))/(d*e*(e*(c + d*x))^(1/3))
 
3.3.32.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.73, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3912, 30, 3042, 3778, 3042, 3784, 3042, 3780, 3783}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx\)

\(\Big \downarrow \) 3912

\(\displaystyle \frac {3 \int \frac {(c+d x)^{2/3} \sin \left (a+b \sqrt [3]{c+d x}\right )}{(e (c+d x))^{4/3}}d\sqrt [3]{c+d x}}{d}\)

\(\Big \downarrow \) 30

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c+d x)^{2/3}}d\sqrt [3]{c+d x}}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c+d x)^{2/3}}d\sqrt [3]{c+d x}}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3778

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \left (b \int \frac {\cos \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}-\frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \left (b \int \frac {\sin \left (a+b \sqrt [3]{c+d x}+\frac {\pi }{2}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}-\frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \left (b \left (\cos (a) \int \frac {\cos \left (b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}-\sin (a) \int \frac {\sin \left (b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}\right )-\frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \left (b \left (\cos (a) \int \frac {\sin \left (\sqrt [3]{c+d x} b+\frac {\pi }{2}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}-\sin (a) \int \frac {\sin \left (b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}\right )-\frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3780

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \left (b \left (\cos (a) \int \frac {\sin \left (\sqrt [3]{c+d x} b+\frac {\pi }{2}\right )}{\sqrt [3]{c+d x}}d\sqrt [3]{c+d x}-\sin (a) \text {Si}\left (b \sqrt [3]{c+d x}\right )\right )-\frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\)

\(\Big \downarrow \) 3783

\(\displaystyle \frac {3 \sqrt [3]{c+d x} \left (b \left (\cos (a) \operatorname {CosIntegral}\left (b \sqrt [3]{c+d x}\right )-\sin (a) \text {Si}\left (b \sqrt [3]{c+d x}\right )\right )-\frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\)

input
Int[Sin[a + b*(c + d*x)^(1/3)]/(c*e + d*e*x)^(4/3),x]
 
output
(3*(c + d*x)^(1/3)*(-(Sin[a + b*(c + d*x)^(1/3)]/(c + d*x)^(1/3)) + b*(Cos 
[a]*CosIntegral[b*(c + d*x)^(1/3)] - Sin[a]*SinIntegral[b*(c + d*x)^(1/3)] 
)))/(d*e*(e*(c + d*x))^(1/3))
 

3.3.32.3.1 Defintions of rubi rules used

rule 30
Int[(u_.)*((a_.)*(x_))^(m_.)*((b_.)*(x_)^(i_.))^(p_), x_Symbol] :> Simp[b^I 
ntPart[p]*((b*x^i)^FracPart[p]/(a^(i*IntPart[p])*(a*x)^(i*FracPart[p]))) 
Int[u*(a*x)^(m + i*p), x], x] /; FreeQ[{a, b, i, m, p}, x] && IntegerQ[i] & 
&  !IntegerQ[p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3778
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c 
 + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m + 1))), x] - Simp[f/(d*(m + 1))   Int[( 
c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[m, - 
1]
 

rule 3780
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinInte 
gral[e + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*e - c*f, 0]
 

rule 3783
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosInte 
gral[e - Pi/2 + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - 
c*f, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 3912
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f 
_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Simp[1/(n*f)   Subst[Int[ExpandIntegra 
nd[(a + b*Sin[c + d*x])^p, x^(1/n - 1)*(g - e*(h/f) + h*(x^(1/n)/f))^m, x], 
 x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p 
, 0] && IntegerQ[1/n]
 
3.3.32.4 Maple [F]

\[\int \frac {\sin \left (a +b \left (d x +c \right )^{\frac {1}{3}}\right )}{\left (d e x +c e \right )^{\frac {4}{3}}}d x\]

input
int(sin(a+b*(d*x+c)^(1/3))/(d*e*x+c*e)^(4/3),x)
 
output
int(sin(a+b*(d*x+c)^(1/3))/(d*e*x+c*e)^(4/3),x)
 
3.3.32.5 Fricas [F]

\[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=\int { \frac {\sin \left ({\left (d x + c\right )}^{\frac {1}{3}} b + a\right )}{{\left (d e x + c e\right )}^{\frac {4}{3}}} \,d x } \]

input
integrate(sin(a+b*(d*x+c)^(1/3))/(d*e*x+c*e)^(4/3),x, algorithm="fricas")
 
output
integral((d*e*x + c*e)^(2/3)*sin((d*x + c)^(1/3)*b + a)/(d^2*e^2*x^2 + 2*c 
*d*e^2*x + c^2*e^2), x)
 
3.3.32.6 Sympy [F]

\[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=\int \frac {\sin {\left (a + b \sqrt [3]{c + d x} \right )}}{\left (e \left (c + d x\right )\right )^{\frac {4}{3}}}\, dx \]

input
integrate(sin(a+b*(d*x+c)**(1/3))/(d*e*x+c*e)**(4/3),x)
 
output
Integral(sin(a + b*(c + d*x)**(1/3))/(e*(c + d*x))**(4/3), x)
 
3.3.32.7 Maxima [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.37 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.05 \[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=\frac {3 \, {\left ({\left (\Gamma \left (-1, i \, b \overline {{\left (d x + c\right )}^{\frac {1}{3}}}\right ) + \Gamma \left (-1, -i \, b \overline {{\left (d x + c\right )}^{\frac {1}{3}}}\right ) + \Gamma \left (-1, i \, {\left (d x + c\right )}^{\frac {1}{3}} b\right ) + \Gamma \left (-1, -i \, {\left (d x + c\right )}^{\frac {1}{3}} b\right )\right )} \cos \left (a\right ) + {\left (-i \, \Gamma \left (-1, i \, b \overline {{\left (d x + c\right )}^{\frac {1}{3}}}\right ) + i \, \Gamma \left (-1, -i \, b \overline {{\left (d x + c\right )}^{\frac {1}{3}}}\right ) - i \, \Gamma \left (-1, i \, {\left (d x + c\right )}^{\frac {1}{3}} b\right ) + i \, \Gamma \left (-1, -i \, {\left (d x + c\right )}^{\frac {1}{3}} b\right )\right )} \sin \left (a\right )\right )} b}{4 \, d e^{\frac {4}{3}}} \]

input
integrate(sin(a+b*(d*x+c)^(1/3))/(d*e*x+c*e)^(4/3),x, algorithm="maxima")
 
output
3/4*((gamma(-1, I*b*conjugate((d*x + c)^(1/3))) + gamma(-1, -I*b*conjugate 
((d*x + c)^(1/3))) + gamma(-1, I*(d*x + c)^(1/3)*b) + gamma(-1, -I*(d*x + 
c)^(1/3)*b))*cos(a) + (-I*gamma(-1, I*b*conjugate((d*x + c)^(1/3))) + I*ga 
mma(-1, -I*b*conjugate((d*x + c)^(1/3))) - I*gamma(-1, I*(d*x + c)^(1/3)*b 
) + I*gamma(-1, -I*(d*x + c)^(1/3)*b))*sin(a))*b/(d*e^(4/3))
 
3.3.32.8 Giac [F]

\[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=\int { \frac {\sin \left ({\left (d x + c\right )}^{\frac {1}{3}} b + a\right )}{{\left (d e x + c e\right )}^{\frac {4}{3}}} \,d x } \]

input
integrate(sin(a+b*(d*x+c)^(1/3))/(d*e*x+c*e)^(4/3),x, algorithm="giac")
 
output
integrate(sin((d*x + c)^(1/3)*b + a)/(d*e*x + c*e)^(4/3), x)
 
3.3.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin \left (a+b \sqrt [3]{c+d x}\right )}{(c e+d e x)^{4/3}} \, dx=\int \frac {\sin \left (a+b\,{\left (c+d\,x\right )}^{1/3}\right )}{{\left (c\,e+d\,e\,x\right )}^{4/3}} \,d x \]

input
int(sin(a + b*(c + d*x)^(1/3))/(c*e + d*e*x)^(4/3),x)
 
output
int(sin(a + b*(c + d*x)^(1/3))/(c*e + d*e*x)^(4/3), x)